GLMR Price: $0.02173 (-0.20%)

Contract

0xF708e11A7C94abdE8f6217B13e6fE39C8b9cC0a6
Transaction Hash
Block
From
To
Add Adapters141985882026-01-23 16:48:1829 hrs ago1769186898IN
DZap: Diamond
0 GLMR0.0018075931.875
0x50d52584139965322026-01-07 14:29:2417 days ago1767796164IN
DZap: Diamond
0 GLMR0.0458505531.28125
0x50d52584138230332025-12-24 9:58:1831 days ago1766570298IN
DZap: Diamond
0 GLMR0.0555506638.4
0x50d52584138225852025-12-24 9:02:3031 days ago1766566950IN
DZap: Diamond
0 GLMR0.1208778538.29
Diamond Cut134427662025-11-22 20:35:0063 days ago1763843700IN
DZap: Diamond
0 GLMR0.039802531.25
Diamond Cut134427592025-11-22 20:34:2463 days ago1763843664IN
DZap: Diamond
0 GLMR0.0046145931.25
Swap134030812025-11-19 12:26:0066 days ago1763555160IN
DZap: Diamond
0 GLMR0.0393434532.25
Swap133416392025-11-14 12:22:1871 days ago1763122938IN
DZap: Diamond
10.78845207 GLMR0.0055161838.39
Swap133145162025-11-12 7:51:4273 days ago1762933902IN
DZap: Diamond
0 GLMR0.0249464538.34
Swap131308492025-10-28 12:28:1888 days ago1761654498IN
DZap: Diamond
0 GLMR0.0341119633
Swap130667352025-10-23 5:05:4893 days ago1761195948IN
DZap: Diamond
2.14784727 GLMR0.0218227633
Set Fee Validato...125764442025-09-13 10:28:18133 days ago1757759298IN
DZap: Diamond
0 GLMR0.001152432.8125
Swap125483682025-09-11 7:23:30135 days ago1757575410IN
DZap: Diamond
4.37480338 GLMR0.0211961734.375
Bridge125385242025-09-10 13:35:06136 days ago1757511306IN
DZap: Diamond
26.32918279 GLMR0.0562602433
Swap125384232025-09-10 13:23:18136 days ago1757510598IN
DZap: Diamond
0 GLMR0.011823533
Diamond Cut124165142025-09-01 15:34:18145 days ago1756740858IN
DZap: Diamond
0 GLMR0.001981531.25
Bridge123878952025-08-30 13:56:42147 days ago1756562202IN
DZap: Diamond
7.85384399 GLMR0.0230054833
Swap123874922025-08-30 13:16:06147 days ago1756559766IN
DZap: Diamond
10 GLMR0.037217433
Swap123853892025-08-30 9:39:00147 days ago1756546740IN
DZap: Diamond
6.89325014 GLMR0.0047414433
Bridge123852992025-08-30 9:29:42147 days ago1756546182IN
DZap: Diamond
6 GLMR0.0141678233
Swap123852642025-08-30 9:25:54147 days ago1756545954IN
DZap: Diamond
5.8062723 GLMR0.0056041933
Add Dexes And Br...123726672025-08-29 11:42:30148 days ago1756467750IN
DZap: Diamond
0 GLMR0.0094729931.875
0x5b1be424123726622025-08-29 11:41:54148 days ago1756467714IN
DZap: Diamond
0 GLMR0.029188531.25
Diamond Cut123725992025-08-29 11:35:00148 days ago1756467300IN
DZap: Diamond
0 GLMR0.0019818131.25
0x2eeb96fc123725962025-08-29 11:34:42148 days ago1756467282IN
DZap: Diamond
0 GLMR0.0016212831.25
View all transactions

Latest 2 internal transactions

Parent Transaction Hash Block From To
86022022024-12-04 5:04:00416 days ago1733288640
DZap: Diamond
0.23726834 GLMR
79237742024-10-17 5:26:48464 days ago1729142808  Contract Creation0 GLMR
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
DZapDiamond

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 300 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

/******************************************************************************\
* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen)
* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535
*
* Implementation of a diamond.
/******************************************************************************/

import { LibDiamond } from "./Shared/Libraries/LibDiamond.sol";
import { IDiamondCut } from "./Shared/Interfaces/IDiamondCut.sol";
import { ZeroAddress } from "./Shared/Errors.sol";

contract DZapDiamond {
    constructor(address _contractOwner, address _diamondCutFacet) payable {
        if (_contractOwner == address(0)) {
            revert ZeroAddress();
        }
        LibDiamond.setContractOwner(_contractOwner);

        // Add the diamondCut external function from the diamondCutFacet
        IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
        bytes4[] memory functionSelectors = new bytes4[](1);
        functionSelectors[0] = IDiamondCut.diamondCut.selector;
        cut[0] = IDiamondCut.FacetCut({ facetAddress: _diamondCutFacet, action: IDiamondCut.FacetCutAction.Add, functionSelectors: functionSelectors });
        LibDiamond.diamondCut(cut, address(0), "");
    }

    // Find facet for function that is called and execute the
    // function if a facet is found and return any value.
    // solhint-disable-next-line no-complex-fallback
    fallback() external payable {
        LibDiamond.DiamondStorage storage ds;
        bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;

        // get diamond storage
        // solhint-disable-next-line no-inline-assembly
        assembly {
            ds.slot := position
        }

        // get facet from function selector
        address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;

        if (facet == address(0)) {
            revert LibDiamond.FunctionDoesNotExist();
        }

        // Execute external function from facet using delegatecall and return any value.
        // solhint-disable-next-line no-inline-assembly
        assembly {
            // copy function selector and any arguments
            calldatacopy(0, 0, calldatasize())
            // execute function call using the facet
            let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
            // get any return value
            returndatacopy(0, 0, returndatasize())
            // return any return value or error back to the caller
            switch result
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    // Able to receive ether
    // solhint-disable-next-line no-empty-blocks
    receive() external payable {}
}

File 2 of 6 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

error OnlyContractOwner();

error NoTransferToNullAddress();
error NativeTransferFailed();
error NullAddrIsNotAValidSpender();
error NullAddrIsNotAnERC20Token();
error InvalidAmount();
error InsufficientBalance(uint256 amount, uint256 contractBalance);

error ZeroAddress();
error AlreadyInitialized();

error NotAContract();
error InvalidContract();

error CannotAuthorizeSelf();
error UnAuthorized();

error InvalidFee();
error InvalidFixedNativeFee();

error InvalidReceiver();
error InformationMismatch();
error InvalidSendingToken();
error NativeTokenNotSupported();
error InvalidDestinationChain();
error CannotBridgeToSameNetwork();

error IntegratorNotAllowed();

error ContractCallNotAllowed();
error NoSwapFromZeroBalance();
error SlippageTooHigh(uint256 minAmount, uint256 returnAmount);
error SwapCallFailed(bytes reason);

error BridgeCallFailed(bytes reason);
error UnAuthorizedCallToFunction();
error TokenInformationMismatch();

error FeeTooHigh();

error NotInitialized();
error UnauthorizedCaller();

error InvalidSwapDetails();

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface IDiamondCut {
    enum FacetCutAction {
        Add,
        Replace,
        Remove
    }
    // Add=0, Replace=1, Remove=2

    struct FacetCut {
        address facetAddress;
        FacetCutAction action;
        bytes4[] functionSelectors;
    }

    /// @notice Add/replace/remove any number of functions and optionally execute
    ///         a function with delegatecall
    /// @param _diamondCut Contains the facet addresses and function selectors
    /// @param _init The address of the contract or facet to execute _calldata
    /// @param _calldata A function call, including function selector and arguments
    ///                  _calldata is executed with delegatecall on _init
    function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external;

    event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

/// https://github.com/Cryptorubic/multi-proxy-rubic/blob/master/src/Libraries/LibBytes.sol
library LibBytes {
    // solhint-disable no-inline-assembly

    // LibBytes specific errors
    error SliceOverflow();
    error SliceOutOfBounds();
    error AddressOutOfBounds();
    error UintOutOfBounds();

    // -------------------------

    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(
                0x40,
                and(
                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                    not(31) // Round down to the nearest 32 bytes.
                )
            )
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00), and(mload(mc), mask)))

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
        if (_length + 31 < _length) revert SliceOverflow();
        if (_bytes.length < _start + _length) revert SliceOutOfBounds();

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        if (_bytes.length < _start + 20) {
            revert AddressOutOfBounds();
        }
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
        if (_bytes.length < _start + 1) {
            revert UintOutOfBounds();
        }
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
        if (_bytes.length < _start + 2) {
            revert UintOutOfBounds();
        }
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
        if (_bytes.length < _start + 4) {
            revert UintOutOfBounds();
        }
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
        if (_bytes.length < _start + 8) {
            revert UintOutOfBounds();
        }
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
        if (_bytes.length < _start + 12) {
            revert UintOutOfBounds();
        }
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
        if (_bytes.length < _start + 16) {
            revert UintOutOfBounds();
        }
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        // solhint-disable-next-line no-empty-blocks
                        for {

                        } eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function getFirst4Bytes(bytes memory data) internal pure returns (bytes4 outBytes4) {
        if (data.length == 0) {
            return 0x0;
        }

        assembly {
            outBytes4 := mload(add(data, 32))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { OnlyContractOwner } from "../Errors.sol";

/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibDiamond {
    bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");

    // Diamond specific errors
    error IncorrectFacetCutAction();
    error NoSelectorsInFace();
    error FunctionAlreadyExists();
    error FacetAddressIsZero();
    error FacetAddressIsNotZero();
    error FacetContainsNoCode();
    error FunctionDoesNotExist();
    error FunctionIsImmutable();
    error InitZeroButCalldataNotEmpty();
    error CalldataEmptyButInitNotZero();
    error InitReverted(bytes reason);

    // ----------------

    struct FacetAddressAndPosition {
        address facetAddress;
        uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
    }

    struct FacetFunctionSelectors {
        bytes4[] functionSelectors;
        uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
    }

    struct DiamondStorage {
        // maps function selector to the facet address and
        // the position of the selector in the facetFunctionSelectors.selectors array
        mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
        // maps facet addresses to function selectors
        mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
        // facet addresses
        address[] facetAddresses;
        // Used to query if a contract implements an interface.
        // Used to implement ERC-165.
        mapping(bytes4 => bool) supportedInterfaces;
        // owner of the contract
        address contractOwner;
    }

    function diamondStorage() internal pure returns (DiamondStorage storage ds) {
        bytes32 position = DIAMOND_STORAGE_POSITION;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            ds.slot := position
        }
    }

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    function setContractOwner(address _newOwner) internal {
        DiamondStorage storage ds = diamondStorage();
        address previousOwner = ds.contractOwner;
        ds.contractOwner = _newOwner;
        emit OwnershipTransferred(previousOwner, _newOwner);
    }

    function contractOwner() internal view returns (address contractOwner_) {
        contractOwner_ = diamondStorage().contractOwner;
    }

    function enforceIsContractOwner() internal view {
        if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
    }

    event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);

    // Internal function version of diamondCut
    function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal {
        for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
            IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
            if (action == IDiamondCut.FacetCutAction.Add) {
                addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Replace) {
                replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Remove) {
                removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else {
                revert IncorrectFacetCutAction();
            }
            unchecked {
                ++facetIndex;
            }
        }
        emit DiamondCut(_diamondCut, _init, _calldata);
        initializeDiamondCut(_init, _calldata);
    }

    function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsZero();
        }
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                revert FunctionAlreadyExists();
            }
            addFunction(ds, selector, selectorPosition, _facetAddress);
            unchecked {
                ++selectorPosition;
                ++selectorIndex;
            }
        }
    }

    function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsZero();
        }
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            if (oldFacetAddress == _facetAddress) {
                revert FunctionAlreadyExists();
            }
            removeFunction(ds, oldFacetAddress, selector);
            addFunction(ds, selector, selectorPosition, _facetAddress);
            unchecked {
                ++selectorPosition;
                ++selectorIndex;
            }
        }
    }

    function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        // if function does not exist then do nothing and return
        if (!LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsNotZero();
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            removeFunction(ds, oldFacetAddress, selector);
            unchecked {
                ++selectorIndex;
            }
        }
    }

    function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
        enforceHasContractCode(_facetAddress);
        ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
        ds.facetAddresses.push(_facetAddress);
    }

    function addFunction(DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress) internal {
        ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
        ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
    }

    function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal {
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FunctionDoesNotExist();
        }
        // an immutable function is a function defined directly in a diamond
        if (_facetAddress == address(this)) {
            revert FunctionIsImmutable();
        }
        // replace selector with last selector, then delete last selector
        uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
        uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
        // if not the same then replace _selector with lastSelector
        if (selectorPosition != lastSelectorPosition) {
            bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
            ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
            ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
        }
        // delete the last selector
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
        delete ds.selectorToFacetAndPosition[_selector];

        // if no more selectors for facet address then delete the facet address
        if (lastSelectorPosition == 0) {
            // replace facet address with last facet address and delete last facet address
            uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
            uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
            if (facetAddressPosition != lastFacetAddressPosition) {
                address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
            }
            ds.facetAddresses.pop();
            delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
        }
    }

    function initializeDiamondCut(address _init, bytes memory _calldata) internal {
        if (LibUtil.isZeroAddress(_init)) {
            if (_calldata.length != 0) {
                revert InitZeroButCalldataNotEmpty();
            }
        } else {
            if (_calldata.length == 0) {
                revert CalldataEmptyButInitNotZero();
            }
            if (_init != address(this)) {
                enforceHasContractCode(_init);
            }
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory error) = _init.delegatecall(_calldata);
            if (!success) {
                revert InitReverted(error);
            }
        }
    }

    function enforceHasContractCode(address _contract) internal view {
        uint256 contractSize;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            contractSize := extcodesize(_contract)
        }
        if (contractSize == 0) {
            revert FacetContainsNoCode();
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "./LibBytes.sol";

library LibUtil {
    using LibBytes for bytes;

    function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
        if (_res.length < 68) return string(_res);
        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes

        return abi.decode(revertData, (string)); // All that remains is the revert string
    }

    /// @notice Determines whether the given address is the zero address
    /// @param addr The address to verify
    /// @return Boolean indicating if the address is the zero address
    function isZeroAddress(address addr) internal pure returns (bool) {
        return addr == address(0);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 300
  },
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_contractOwner","type":"address"},{"internalType":"address","name":"_diamondCutFacet","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"CalldataEmptyButInitNotZero","type":"error"},{"inputs":[],"name":"FacetAddressIsNotZero","type":"error"},{"inputs":[],"name":"FacetAddressIsZero","type":"error"},{"inputs":[],"name":"FacetContainsNoCode","type":"error"},{"inputs":[],"name":"FunctionAlreadyExists","type":"error"},{"inputs":[],"name":"FunctionDoesNotExist","type":"error"},{"inputs":[],"name":"FunctionIsImmutable","type":"error"},{"inputs":[],"name":"IncorrectFacetCutAction","type":"error"},{"inputs":[{"internalType":"bytes","name":"reason","type":"bytes"}],"name":"InitReverted","type":"error"},{"inputs":[],"name":"InitZeroButCalldataNotEmpty","type":"error"},{"inputs":[],"name":"NoSelectorsInFace","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"stateMutability":"payable","type":"fallback"},{"stateMutability":"payable","type":"receive"}]

60806001600160401b03601f610c0138819003918201601f1916840191838311858410176105da57808592604094855283398101031261062a5761004e60206100478461066d565b930161066d565b916001600160a01b03168015610618577fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c132080546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a36100c761064e565b916001835260005b602081106105f057506100e061064e565b60018152602036818301376307e4c70760e21b6100fc82610681565b5261010561062f565b6001600160a01b03909216825260006020830152604082015261012783610681565b5261013182610681565b506040519060208201908111828210176105da576040526000808252825b805182101561047957602061016483836106a4565b510151600381101561046357806102a157506001600160a01b0361018883836106a4565b515116604061019784846106a4565b51015180511561028f57811561027d576001600160a01b0382166000908152600080516020610be183398151915260205260409020546001600160601b039390841690811561026f575b6000915b835183101561025b576001600160e01b031961020184866106a4565b51166000818152600080516020610ba183398151915260205260409020549091906001600160a01b03166102495760018161023f888a94849661079d565b01169201916101e5565b60405163a023275d60e01b8152600490fd5b50959492505050600191505b01909161014f565b610278846106df565b6101e1565b604051636347641d60e11b8152600490fd5b6040516307bc559560e41b8152600490fd5b600181036103a657506001600160a01b036102bc83836106a4565b5151169260406102cc84846106a4565b51015180511561028f57841561027d576001600160a01b0385166000908152600080516020610be183398151915260205260409020546001600160601b0393908416908115610398575b6000915b8351831015610389576001600160e01b031961033684866106a4565b51166000818152600080516020610ba183398151915260205260409020546001600160a01b031690898214610249578261037f8b6001958461037a88968e98610888565b61079d565b011692019161031a565b50955050509160019150610267565b6103a1876106df565b610316565b600203610451576001600160a01b036103bf83836106a4565b5151169060406103cf84836106a4565b5101519182511561028f5761043f5760005b82518110156104335760019061042d6001600160e01b031961040383876106a4565b511680600052600080516020610ba1833981519152602052838060a01b0360406000205416610888565b016103e1565b50929160019150610267565b604051633ce4ef9160e11b8152600490fd5b60405163e548e6b560e01b8152600490fd5b634e487b7160e01b600052602160045260246000fd5b905060405190606082016060835281518091526080830190602060808260051b8601019301916000905b8282106105425750505050600060208301528181036040830152825180825260005b81811061052d57508282826000602080957f8faa70878671ccd212d20771b795c50af8fd3ff6cf27f4bde57e5d4de0aeb6739897010152601f801991011601030190a15161051b5760405160c29081610adf8239f35b6040516304c08b4360e51b8152600490fd5b806020809287010151828286010152016104c5565b858503607f19018152835180516001600160a01b0316865260208101519495939492939192906003821015610463576040916020840152015190606060408201526020608060608301928451809452019201906000905b8082106105b7575050506020806001929601920192019092916104a3565b82516001600160e01b031916845260209384019390920191600190910190610599565b634e487b7160e01b600052604160045260246000fd5b6020906105fb61062f565b6000815260008382015260606040820152828287010152016100cf565b60405163d92e233d60e01b8152600490fd5b600080fd5b60405190606082016001600160401b038111838210176105da57604052565b60408051919082016001600160401b038111838210176105da57604052565b51906001600160a01b038216820361062a57565b80511561068e5760200190565b634e487b7160e01b600052603260045260246000fd5b805182101561068e5760209160051b010190565b600080516020610bc1833981519152805482101561068e5760005260206000200190600090565b803b1561076957600080516020610bc183398151915280546001600160a01b0383166000908152600080516020610be1833981519152602052604090206001018190559190680100000000000000008310156105da5782610748916001610767950190556106b8565b90919082549060031b9160018060a01b03809116831b921b1916179055565b565b6040516271a80360e91b8152600490fd5b919091805483101561068e57600052601c60206000208360031c019260021b1690565b6001600160e01b031981166000818152600080516020610ba183398151915260208190526040822080546001600160a01b031660a09690961b6001600160a01b031916959095179094559194939092906001600160a01b0316808352600080516020610be18339815191526020526040832080549194919068010000000000000000821015610874579661083e826040979899600161085b9501815561077a565b90919063ffffffff83549160031b9260e01c831b921b1916179055565b82526020522080546001600160a01b0319169091179055565b634e487b7160e01b85526041600452602485fd5b9091906001600160a01b039081168015610acc57308114610aba5763ffffffff60e01b809416600092818452600080516020610ba1833981519152926020918483526040948587205460a01c90838852600080516020610be18339815191529586865287892054926000199b8c8501948511610aa657908991888c898c89808703610a38575b505090525050508787525087892080548015610a24578c0190610931828261077a565b63ffffffff82549160031b1b19169055558852845286868120551561095b575b5050505050509050565b600080516020610bc18339815191528054898101908111610a1057838852858552826001888a200154918083036109de575b50505080549889156109ca57600197989901916109a9836106b8565b909182549160031b1b19169055558552528220015580388080808080610951565b634e487b7160e01b88526031600452602488fd5b6109e7906106b8565b90549060031b1c166109fc81610748846106b8565b88528585526001878920015538828161098d565b634e487b7160e01b88526011600452602488fd5b634e487b7160e01b8b52603160045260248bfd5b610a99978461083e93610a578a9487610a6d9952828a5284842061077a565b90549060031b1c60e01b9788968352522061077a565b168b52838852898b2080546001600160a01b031660a09290921b6001600160a01b031916919091179055565b873880888c898c8961090e565b634e487b7160e01b8b52601160045260248bfd5b60405163c3c5ec3760e01b8152600490fd5b604051631535ac5f60e31b8152600490fdfe60806040523615608a57600080356001600160e01b03191681527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c602052604081205473ffffffffffffffffffffffffffffffffffffffff168015607957818091368280378136915af43d82803e156075573d90f35b3d90fd5b631535ac5f60e31b60805260046080fd5b00fea2646970667358221220e8e86efb8ee77b86665fa5c5559071a2104f16237d867d1f302bb954f0f1998d64736f6c63430008130033c8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131cc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131ec8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131d00000000000000000000000045679cdf728abdcdfce0f03a8f1d22ba49babc720000000000000000000000003e9fd8dcfd992a5a254c5e43d2e8a7b60bfda8d8

Deployed Bytecode

0x60806040523615608a57600080356001600160e01b03191681527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c602052604081205473ffffffffffffffffffffffffffffffffffffffff168015607957818091368280378136915af43d82803e156075573d90f35b3d90fd5b631535ac5f60e31b60805260046080fd5b00fea2646970667358221220e8e86efb8ee77b86665fa5c5559071a2104f16237d867d1f302bb954f0f1998d64736f6c63430008130033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000045679cdf728abdcdfce0f03a8f1d22ba49babc720000000000000000000000003e9fd8dcfd992a5a254c5e43d2e8a7b60bfda8d8

-----Decoded View---------------
Arg [0] : _contractOwner (address): 0x45679CDF728abdcdfce0F03A8f1D22BA49BAbC72
Arg [1] : _diamondCutFacet (address): 0x3E9fd8DCfD992a5a254C5E43D2e8a7b60BfDA8D8

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000045679cdf728abdcdfce0f03a8f1d22ba49babc72
Arg [1] : 0000000000000000000000003e9fd8dcfd992a5a254c5e43d2e8a7b60bfda8d8


Block Transaction Gas Used Reward
view all blocks collator

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

OVERVIEW

Meta dex and bridge aggregator

Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0xF708e11A7C94abdE8f6217B13e6fE39C8b9cC0a6
Net Worth in USD
$5.57

Net Worth in GLMR
Moonbeam Chain LogoMoonbeam Chain LogoMoonbeam Chain Logo 256.18479

Token Allocations
FRAX 51.63%
SEI 14.25%
ETH 14.03%
Others 20.09%
Chain Token Portfolio % Price Amount Value
FRAXTAL51.63%$1.042.763$2.87
SEI14.25%$0.1063397.46$0.793296
SCROLL7.72%$2,957.770.00014522$0.429537
POL7.61%$0.1267613.343$0.423769
BASE6.63%$0.9996240.3693$0.3691
ARB6.31%$2,957.470.00011883$0.351437
AVAX2.93%$12.090.0135$0.163227
MANTLE1.87%$0.9070110.1149$0.10418
CELO0.79%$0.1164650.3765$0.043853
BSC0.16%$887.980.00001013$0.008997
GLMR
Moonbeam (GLMR)
0.09%$0.0217720.2373$0.005166
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.